Introduction of Thermal Conductivity of Secondary High Alumina Brick and Its Influence On Kiln

2023-08-05 17:33:46

The thermal conductivity of the secondary high alumina brick is usually around 1.0W/(m·K). This value refers to the ability of the heat flow per unit area to pass through the material in a unit of time, that is, the speed at which the material conducts heat. The smaller the thermal conductivity, the better the thermal insulation performance of the material, and vice versa.

It should be noted that the specific thermal conductivity of secondary high alumina bricks produced by different manufacturers may be slightly different, and the specific value should be confirmed according to the specific product. In addition, the performance of secondary high alumina bricks is not only affected by their thermal conductivity but also by other factors, such as density, compressive strength, etc. Multiple factors need to be considered comprehensively when selecting and using.

Thermal conductivity has an important influence on the kiln because the heat loss and heat balance of the kiln are closely related to thermal conductivity.

First of all, the heat loss of the kiln refers to the heat energy lost during the operation of the kiln. When the thermal conductivity of the furnace wall material of the kiln is high, the heat can be transferred to the outside of the furnace faster, thereby increasing the heat loss. On the contrary, if the thermal conductivity of the furnace wall material is low, the heat can be transferred to the outside of the furnace more slowly, thereby reducing heat loss and improving the utilization rate of heat energy.

Secondly, the heat balance of the kiln refers to whether the temperature distribution inside the kiln is balanced. If the thermal conductivity of the furnace wall material of the kiln is high, the heat can be transferred to the outside of the furnace faster, which makes it difficult to maintain the balance of the internal temperature of the kiln and affects the production efficiency. On the contrary, if the thermal conductivity of the furnace wall material is low, the heat can be transferred to the outside of the furnace more slowly, which helps to maintain the balance of the temperature inside the furnace and improve production efficiency.

To sum up, the thermal conductivity of the furnace wall material has an important influence on the energy consumption and production efficiency of the furnace. When selecting furnace wall materials, it is necessary to comprehensively consider multiple factors such as thermal conductivity, density, and compressive strength to meet the needs of the furnace.

Home Tel Email Inquiry